organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

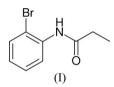
Vicki Ronaldson, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

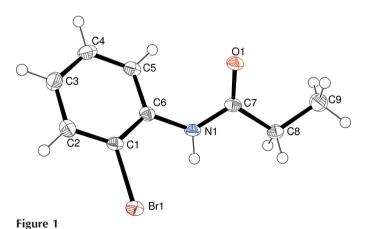
Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.027 wR factor = 0.065 Data-to-parameter ratio = 18.4


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

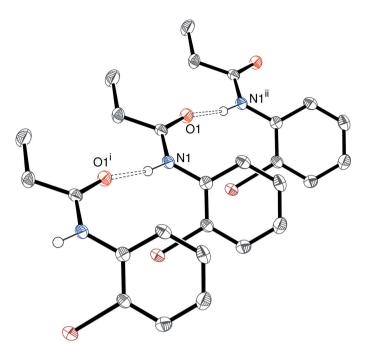
N-(2-Bromophenyl)propionamide

The title compound, $C_9H_{10}BrNO$, possesses normal geometrical parameters. The crystal packing is influenced by an N- $H \cdots O$ hydrogen bond.


Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of acetanilide derivatives (Ronaldson *et al.*, 2005).

The dihedral angle between the mean planes of the benzene ring (atoms C1–C6) and the N1/O1/C7/C8 side chain is 40.92 (10)°. This is very similar to the value [42.75 (14)°] in *N*-(2-bromophenyl)acetamide, (II) (Ronaldson *et al.*, 2005). The bond angle sum about N1 in (I) is 360.0° , indicating that this atom is sp^2 hybridized. The C6–N1 distance of 1.416 (3) Å in (I) is almost identical to the equivalent distance [1.418 (4) Å] in (II). All the other geometrical parameters for (I) lie within their expected ranges (Allen *et al.*, 1995).


The crystal packing in (I) is influenced by an N-H···O hydrogen bond (Table 1 and Fig. 2) that links the molecules into chains propagating in the [100] direction. There are no π - π interactions in (I). The unit-cell packing is shown in Fig. 3; (I) is essentially isostructural (same space group, similar unitcell parameters) with (II), except that the unit cell for (I) is slightly expanded in the *c*-axis direction to accommodate the more bulky terminal ethyl moiety.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved View of (I), shown with 50% displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radius.

Received 1 September 2005 Accepted 6 September 2005 Online 14 September 2005

organic papers

Figure 2

Detail of (I), showing how N-H···O hydrogen bonds (dashed lines) link molecules into a chain. The view direction is perpendicular to the mean plane of the benzene ring of the central molecule, showing that no π - π stacking occurs. All H atoms except H1 have been omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]

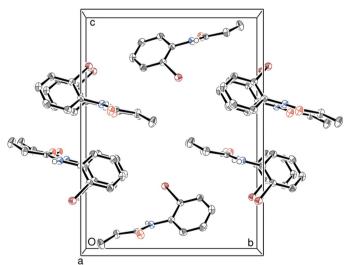


Figure 3

The packing in (I), viewed down [010], with all H atoms except H1 omitted for clarity.

Experimental

2-Bromoaniline (3.44 g, 20.0 mmol) was added to a solution of propionyl chloride (2.22 g, 24.0 mmol) and DIPEA (*N*,*N*-diisopropylethylamine) (3.12 g, 24.0 mmol) in dry tetrahydrofuran (20 ml) at 273 K. The reaction was monitored by thin-layer chromatography and, when complete, the mixture was diluted with water (20 ml) and the product was extracted with EtOAc (3×20 ml). The organic phase was washed with water (2×20 ml) and brine (20 ml) then dried over MgSO₄ and evaporated under reduced pressure to

yield the crude product which was recrystallized from CH₂Cl₂ to give 4.31 g (95% yield) of (I) as colourless needles. M.p. 360–362 K; $R_{\rm F}$ = 0.19 [hexane/EtOAc (10:1)]; $v_{\rm max}$ (KBr disc)/cm⁻¹: 3277 (NH), 2971–2932 (C–H), 1655 (C=O), 1573 (Ar C=C); $\delta_{\rm H}$ (250 MHz, CDCl₃) 1.27 (3H, *t*, *J* = 7.5 Hz, CH₃), 2.46 (2H, *q*, *J* = 7.5 Hz, CH₂), 6.95 (1H, *t*, *J* = 7.5 Hz, Ar–H), 7.29 (1H, *t*, *J* = 8.0 Hz, Ar–H), 7.51 (1H, *d*, *J* = 8.0 Hz, Ar–H), 8.35 (1H, *d*, *J* = 7.5 Hz, Ar–H); $\delta_{\rm C}$ (CDCl₃) 9.6 (CH₃), 31.1 (–CO–CH₂–), 113.2, 121.9, 125.0, 128.4, 132.2 and 135.7 (Ar–C), 172.0 (C=O). [*M*+H]⁺ 226.994, C₉H₁₀⁷⁹BrNO requires 226.995.

Crystal data

C₉H₁₀BrNO $M_r = 228.09$ Monoclinic, $P2_1/n$ a = 4.8701 (1) Å b = 11.8048 (4) Å c = 15.9296 (5) Å $\beta = 93.964$ (2)° V = 913.61 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan

(SADABS; Bruker, 2003) $T_{min} = 0.297, T_{max} = 0.916$

13742 measured reflections 2092 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.065$ S = 1.072092 reflections 114 parameters H atoms treated by a mixture of independent and constrained refinement $D_x = 1.658 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 2165 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 4.45 \text{ mm}^{-1}$ T = 120 (2) KNeedle, colourless $0.36 \times 0.05 \times 0.02 \text{ mm}$

1822 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.5^{\circ}$ $h = -6 \rightarrow 6$ $k = -15 \rightarrow 15$ $l = -20 \rightarrow 20$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0226P)^2 \\ &+ 0.9463P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.38 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.37 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: SHELXL97} \\ \text{Extinction coefficient: } 0.0039 (9) \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^i$	0.85 (3)	2.06 (3)	2.889 (2)	164 (2)

Symmetry code: (i) x - 1, y, z.

All C-bound H atoms were placed in idealized positions (C–H = 0.95-0.99 Å) and refined as riding on their carriers with the constraint $U_{iso}(H) = 1.2U_{eq}(C)$ or $U_{iso}(H) = 1.5U_{eq}(methyl C)$ applied. The methyl group was allowed to rotate about the C9–C8 bond as a rigid group. The N-bound H atom was located in a difference map and its position was freely refined with the constraint $U_{iso}(H) = 1.2U_{eq}(N)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997), and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the EPSRC National Mass Spectrometry Service (University of Swansea) and the EPSRC National Crystallography Service (University of Southampton) for data collections.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, Section 9.5, pp. 685-706. Dordrecht: Kluwer Academic Publishers.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (1998). *COLLECT*. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Ronaldson, V., Storey, J. M. D. & Harrison, W. T. A. (2005). Acta Cryst. E61, 03156-03158.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.